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Theory and experiment are presented for mass transfer into a fully developed 
turbulent flow in a plain circular tube in two non-axisymmetric cases. The cases 
studied are a diametral line source and a discontinuous ring source, in which 
there is a uniform mass flux over rectangular areas of the tube wall. A comparison 
is made between the concentration profles predicted by the solutions of 
the diffusion equation and experiments using nitrous oxide, Schmidt number 
8 = 0.77, as a tracer gas in air. The range of experiments covers Reynolds 
numbers R from 20,000 to 120,000. 

In  the analysis, the assumption is made that the tangential and radial eddy 
diffusivities of mass are equal at a point. The radial diffusivity of mass, which is 
a function of radial position, is related to the radial eddy diffusivity of momentum 
by a ratio, which takes account of fluid properties and the value of the radial 
eddy diffusivity of momentum. The satisfactory agreement between analysis 
and experiment establishes the correctness of this assumption. Further con- 
firmation was obtained by direct evaluation of the tangential eddy diffusivity 
of mass from the measured concentration profiles. 

1. Introduction 
The non-axisymmetric problem with heat or mass transfer in a tube has re- 

ceived much less attention than the axisymmetric problem. The solution of the 
non-axisymmetric problem would require a knowledge of the diffusion process 
in the tangential direction as well as in the radial direction. That is, it is necessary 
to know the tangential eddy diffusivity of heat eh, or of mass ed, w ,  aa well as the 
radial diffusivities E ~ , ~  and In  the axisymmetric situation, much effort has 
gone into obtaining an acceptable description of the radial eddy difFusivity of 
heat or mass from the description of the radial eddy diffusivity of momentum 
em,r, by use of a suitable expression for their ratio. In  the non-axisymmetric case, 
a logical consequence of this approach is to relate the tangential eddy diffusivity 
to the radial eddy diffusivity. Such an approach was used by Reynolds (1963) 
and Spamow & Lin (1963), who considered heat transfer to a fully developed 
turbulent flow in a plain tube, which has circumferential variations of wall heat 
flux or temperature. Sparrow & Black (1967) have given experimental results for 
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fully developed heat transfer to air in an electrically heated tube, whose varying 
wall thickness gave a circumferentially varying wall heat flux. Both Reynolds 
and Sparrow & Lin assumed that B ~ , ~  was equal to E ~ , ~  at the same point. HOW- 
ever, the temperature profiles predicted by the analysis of Sparrow & Lin agreed 
with the experiments of Sparrow & Black, only if it was assumed that in the sub- 
layer the ratio of these two quantities was about ten. 

A number of criticisms may be made of this work. Thus, an exact solution of 
the energy equation was not given. The theoretical work was carried out by 
fitting polynomials and extrapolation of the results. Also, the expression 
chosen to describe the radial eddy diffusivity gives a value of - 1 at the centre 
of the tube. This is a most unacceptable result, when considering a non-axisym- 
metric situation, in which heat is transferred across this region. No evidence was 
presented to establish the correctness of the heat fluxes, and it is not possible to 
check on the method of calculation of heat flux. Also, Hanold (1967) suggests 
that some part of the discrepancy between theory and experiment can be attri- 
buted to the effect of natural convection, which was not considered in the analysis. 
Hall & Hashimi (1964) gave an approximate solution of the diffusion equation for 
mass transfer into a fully developed turbulent flow in a tube from a patch source 
in the tube wall. This solution neglected tangential difhsivity. It was compared 
with experimental measurements of the concentration of nitrous oxide made 
along the axis of the tube wall. The agreement with theory was not good. 

It is clear from the above that previous work on the problem of non-axisym- 
metric heat and mass transfer has not established a description of the tangential 
eddy diffusivity, or what ratio it has to the radial eddy diffusivity. In  the first 
part of this work, Quarmby & Anand (1969) establishedresults for axisymmetrical 
mass transfer, which provide a basis from which the non-axisymmetric problem 
may be considered. The results establish acceptable and accurate descriptions 
of the velocity profile and of the radial eddy diffusivities of mass and momentum. 
The experimental apparatus was easily adapted to  provide precisely defined non- 
axisymmetric boundary conditions. Information about the tangential eddy d i f i -  
sivity and its relation to the radial eddy diffusivity may be obtained in two ways. 
A solution of the governing equation could be obtained, in which some assump- 
tion is made about the ratio of ea,,, to E ~ , ~  and the predicted non-axisymmetric 
concentration profiles compared with the measurements of a complementary 
experiment. Alternatively, detailed measurements of the non-axisymmetric 
concentration profiles could be used to calculate the values of tangential eddy 
diffusivity by a suitable numerical integration scheme. Both these methods were 
used here. 

2. Analysis and formulation of the equations 
(i) The diffusion equation 

Solutions were sought of the diffusion equation in two non-axisymmetric cases. 
These were: (a) a diametral line source, and (b)  a discontinuous ring source 
in the tube wall, in which there was a uniform mass flux over only a part of the 
cylindrical surface. 
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Like the axisymmetric situations studied in the fkst part of this work, the 
two cases were chosen on the ground that, in the first, the diffusion process takes 
place mainly in the turbulent core, whereas, in the second, it is initially through 
the sublayer. 

For steady-state conditions and constant fluid properties, and neglecting 
axial diffusion, the concentration c at any point T ,  x ,  w is given by the governing 

where u is the velocity of the fluid, density p, and D the molecular diffusivity. 
The non-dimensional variables 

are introduced, where 70 is the shear stress a t  the wall of the tube, radius ro, 
and v is the kinematic viscosity. 

The bulk mean concentration c, is defined by 

Equation (1) becomes 

and the boundary condition on (3a)  is 

(ii) The initial profile 

The boundary condition at x+ = 0 is determined experimentally as 

e(o,r+,o) = e,. (4) 

For non-axisymmetric diffusion, Si is a function of r and w.  Since the fully de- 
veloped concentration profile is uniform for large x+, as a result of (3b) ,  it is 
convenient to express 0, by 

n= co 

Si = 1 +Ao + A, cos (no'), (5  a )  
n= 1 

m= R 

where 
... . 

A ,  = anm.zm 
m=O 

and z is r/ro. 
Thus, the initial profile contains the fully developed uniform profile explicitly 

together with a symmetric A,, which is a function of radius only, and the functions 
which include the tangential variation of 0,. This tangential variation of Oi is 
expressed in terms of the angle d. The change of angle is made since, if the 
measured profile is expanded in terms of a Fourier series, the period must be 2n. 
In  the actual cases considered, it will be noted from figures 1 and 2 that the period 
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of the line source will be IT, and that that of the discontinuous ring source will 
be &IT. Such a set up is convenient in the experimental situation, because it 
allows detailed and extensive measurement to be conhed to either one-half 
or one-quarter of the tube cross-section. 

I J A  

B 

(b) 

0 
ij 
(4 

X F  

(4 
FIGURE 1. DetaiI of diametrical line source. (a) A,  Nitroue oxide inlet; B, brass 

E,  stainless-steel hypodermic. (b )  Section C-C. (c) Section D-D. F, 0.010 in. 

C 

tube : 

FIGURE 2. Detail of discontinuous ring source. A ,  Impermeable sector; B, permeable 
sector. C, nitrous oxide inlet; D, Vyon porous plastic. 
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Thus, for the line source, detailed measurements are made for 0 < w < T ,  and 
these are expressed in a Fourier series in w' = 20. Since the function in w' has 
zero slope at w' = 0 and 27r, it follows that a Fourier cosine series will result 
with the eigenvalues being the integers 1,2,3 ... as given in equation (5a). 
For the discontinuous ring source w' = 412, but the Fourier cosine series still 
holds. In  general, the relation between w and 0' is w' = mu, where m is the 
periodicity of the initial profile in w.  

(iii) Solution of the diffusion equation 

The solution is divided into a fully developed part 
As stated, 8, has a uniform value; thus 

and a developing part 8,. 

el = 1, 

whilst 8, has 
(5a),  it follows that the value of 8; at x+ = 0 is A,, whilst 

symmetric part 8; and an unsymmetric part 8;. From equation 

n = m  

n = l  
8; = 2 Ancos(mnw). (7) 

It is clear that the mixed mean concentration due to O2 is zero. 
Since 8, takes complete account of the fully developed situation, there can 

be no further addition to it rising from either A ,  or any of the other harmonics. 
Thus the profile resulting from A, will consist only of a decaying axispmetric 
profile. The solution for the symmetric diffusion is identical to that given by 
Quarmby & Anand, and we may write 

where fin and ,8n are the eigenfimctions and eigenvalues, and the constants C, 
are given by 

c, = 

The equation for el; is 

andia variable separable solution is sought to the form 

el; = $(x+) g ( r + ) f ( w ) .  

On re-arrangement we have: 

which may be equated to a constant, - 2a2/R. 
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2a2 
The solution for $ is $(x+) = exp ( - x+) , 

Since the flow is fully developed and unidirectional, e6,, must be independent 
of w and only a function of r+. We write 

and 

and E, may be taken out of the right-hand bracket of (13). 
Although this is a considerable simplification, a description of E, is needed 

before the solution can proceed. Substituting (14) into (13), and equating to a 
constant A2, we obtain 

The solution for f is 
A=m 

A = O  
f = 2 A;cos(hw)+Bisin(hw). (16) 

In  order to obtain a more general solution of (16), we apply only the condition 
that at  some angle, w = 0, the tangential profile has zero slope. Since the bulk 
concentration of @; has zero value, this condition must hold whatever the cir- 
cumferential variation of the diffusion source. Accordingly, the solution of (16) 
is a cosine series, and A, are the integers 0, 1, 2, 3, . . . . It is preferable to use this 
result for f ( w ) ,  rather than a more restricted form (e.g. A = 2, 4, 6, ...), since 
the eigenfunctions ,932 are determined by the values assigned to A. Thus, we 
seek a more general solution off ( w ) ,  rather than restrict it to the forms of particu- 
lar initial profile, with which we are concerned in the present case. Also, since 
the eigenvalue h = 0 corresponds to a part of the solution, which is not a function 
of w ,  this eigenvalue is ignored, because all the axisymmetric part of the solution 
has been accounted for in (8a). 

Accordingly, A=m 

f ( w )  = z Aicos(Aw), 
a=i  

where A = 1,2,3,  .... 
The coefficients A; are determined as follows. At T+ = r$ we may normalize 

the functions &"(r+). This is permissible since the constants of these eigen- 
functions are still to be determined. The initial value is given by (7), so that, at  
x+ = 0 andrf = r$,  

A=m It= m 

A = l  n= 1 
c A; cos (Aw)  = A,( 1) cosnw'. (18) 

Since each side of (18) is a Fourier cosine series in the same interval, &2n, 
the coefficients must be identical. Thus, 

A:, = M l ) ,  
= a,() + anl( 1) + anz( l ) 2 . .  . . (19) 
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That is, the coefficients off (w)  are shown to be the sum of the coefficients of 

The solution for 9 ( r + )  is given by 
the polynomials in r+ which were fitted to the initial profile. 

with the boundary conditions 

since the boundary is impermeable and 

a 9  - = 0 at r+ = 0. 
ar+ 

This latter condition holds, since it is easily seen from figures 1 and 2 that 
the concentration profile must be symmetric about r+ = 0 along any one dia- 
meter. 

Sets of eigenvalues a need to be calculated for each of the h = 1,2 ,3 ,  . ... 
The solution for 9(r+)+(x+) for any one value of w is thus 

where the coefficients K ,  are determined from the initial profile. Thus at x+ = 0 

at any value of w n=m IL= 00 

whilst 

C, A, cos nu' = f ( w )  --c, ~ ~ 9 i ? ~ ,  
n= 1 n=l 

A=m 

A = l  
f (w) = C, A;cos(hw). 

cos nw' [r A; cos (Aw,] 1: An (5) gnu+r+ dr+ 

Thus, Kn = 3 (25 )  
A-1 1: u + r + g ;  dr+ 

and the concentration profile is given by 

(iv) Description of the velocity proJile and eddy diffwivities 

The velocity profile and radial eddy diffusivity of mass are assumed the same in 
the non-axisymmetric situation as in the axisymmetric situation. Accordingly, 
the descriptions established by Quarmby & Anand are used for these quantities. 

A most useful result would be obtained if a simple relationship could be estab- 
lished between ed,& and Laufer (1954) and Sandborn (1955) have shown 
experimentally that near the centre of the tube conditions of isotropy prevail, 
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but that near the wall this is not so, It is reasonable to assume, as a start, that the 
ratio of ed,d,o to ed, will be a function of radius, so that 

%,w = W+) %,t. (27) 

The evaluation of 8 from (26) allows a comparison with experiment, from 
which the correctness of the assumption made concerning F(r+) may be estab- 
lished. In  this work, we assume P(r+) = 1, that is, that the radial and tangential 
eddy Wusivities of mass are equal at  a point. 

3. Calculations 
Calculations were made of the eigenvalues a, and constant K,  of (25) for the 

Reynolds numbers 20,800, 44,700, 81,900 and 119,000 for the discontinuous 
ring source, and Reynolds numbers 20,800 and 44,700 for the diametral line 
source. The eigenvalues /3,, and the values of the parameter r:, are given for 
these Reynolds numbers in the results obtained for the symmetric situation in 
the first part of this work. The constants C,, however, need recalculating to 
correspond with the symmetric part of the initial profile A,,, according to (8 b).  

The measured initial profiles a t  x+ = 0 were described as functions of r and w 
as follows. Fourier coefficients A ,  were fitted to the experimental points for 
constant z. They were found by the method of Hildebrand (1955), using a 
technique due to Ralston & Wilf (1960). Polynomials in z, equation (Sb), were 
then found for each A,. The coefficient A; wasthen found from (19). The constants 
K,  were evaluated for seven values of w in the ranges 0 to in for the ring source 
and 0 to n for the line source. The tables of K,, in particular, are very extensive, 
since there are accordingly seven values of K ,  for each value of a,.? 

Use of the constants and eigenvalues obtained allows the non-dimensional 
concentration profile to be calculated from (26). This profile may be compared with 
experimental measurements to provide a test of the assumption that the 
tangential eddy diffusivity of mass is equal to the radial eddy diffusivity of mass. 

4. Experimental investigations 
(i) Experimental apparatus 

The experimental apparatus is the same as that used by Quarmby & Anand 
in the first part of this work. The discontinuous ring source was made by cover- 
ing part of the permeable surface of the continuous ring source with impermeable 
adhesive tape. The diametral line source consisted of a stainless steel hypodermic 
tube, of 0.0425 in. outside diameter, and of 0.030 in. inside diameter, in which a 
large number of small holes, of 0.010 in. diameter, were drilled. Nitrous oxide 
was fed in at  both ends. The sources are shown in figures 1 and 2. 

(ii) Experimental measurements 

Measurements of the concentration profile were made at  each traversing station 
for the Reynolds numbers listed above. For the discontinuous ring source, 

t All the computed results for the eigenvalues and constants may be obtained from 
either author; they ar0 too extensive to be given here. 
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extensive measurement was confined to 0 < w < @, and for the diametral 
line source, it was confined to 0 < w < T. Measurements were also made over 
the rest of the cross-sectional area as a check. In  all cases, consistent results 
were obtained. 

5. Comparison between theory and experiment 
Figures 3 and 4 show the development of the non-dimensional radial concen- 

tration profile between x+ = 0 and x+ = 92-95, for the discontinuous ring source 
for R = 20,800 and R = 119,000, with w = 0 and w = IT. Figure 5 shows the 

1.0 0-9 0 8  0.7 0.6 0 5  0.4 0.3 0.2 0.1 0 

z 

FIGURE 3. Radial concentration profiles for ring source, R = 20,800, o = 0 and 1.5714 
rad: theory, equation (26), -; experiment, x+: 0, 0.00; x,  18.60; 0, 51-66; m, 92.98. 
o = 0.7857 rad: theory, equation (26), ---; experiment, x+: +, 0.00; v, 18-60; 0, 
51.66; A, 92.98. 

axial development for R = 20,800 at o = $T, for various values of z. It may be 
noted that, for large sf, the measured values of 8 approached unity. The develop- 
ing radial profile for the diametral line source is shown in figure 6 for R = 20,800 
for w = 0, and in figure 7 for w = in. The axial development for w = is shown 
in figure 8 for various values of z. In  each of these results, the agreement between 
theory and experiment is most satisfactory. 

30 Fluid Mech. 38 
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Direct measurement of the tangential eddy dsusivity of mass was made 
from the concentration profiles. From (2), 

and, since is not a function of w ,  

e 

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 

z 

FIGURE 4. Radial concentration profiles for ring source, R = 119,000. w = 0 and 1.5714 
red: theory, equation (26), -- , experiment, Z+ : 0, 0.00; X ,  81.60; 0, 51.66; H, 92.98. 
w = 0.7857 rad: theory, equation (26), ----; experiment, z+: +, 0.00; V, 18.60; 
0, 51-66; A, 92.08. 

The numerical evaluation of (29) used the same techniques as were used in the 
first part of this work to calculate The value of Ed,? in (29) was also taken from 
the results of the first part. Since Ed,? is not a function of w, we should get the same 
result at whatever value of w it is calculated. However, the numerical evaluation 
of second derivatives is a dubious process. Figure 9 shows the tangential 
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concentration profiles at  x+ = 31.0, from which aaO/aw2 was evaluated for 
R = 20,800. It is clear that, considering the limitations of the method, meaning- 
ful results for P O / W  could be expected only at in, where aO/aw is greatest. 

X+ 

FIGURE 5. Axial development of concentration prome for ring HOUTC~, R = 20,800, w = 
0.7857 rad: theory, equation (26), -* , experiment, z :  0, 0.990; a, 0-793; A, 0.594; 
V, 0.306; +, 0.198; 0, 0.000. 

Figure 10 compares the measured values of Ed,w with the theoretical expression 
given by assuming F(r+) = 1 and use of the expression for the radial eddy diffu- 
sivity developed in the first part of this work. The agreement is quite satisfactory. 
This result may also be compared with Jenkins' (1951) expression for the ratios 
of the eddy dBusivity of mass to that of momentum. For non-axisymmetric 
mass transfer Jenkins' expression, which relates the radial eddy diffusivities 
of heat and momentum, is modified to become 

where I is the mixing length and v the supposed velocity of the spherical tur- 
bulent eddy. The comparison with the present results is shown in figure 11. 

The good agreement between theory and experiment seems to establish that 
the radial and tangential eddy diffusivities of mass are equal at  any point in a 
fully developed turbulent flow. However, it may be that the solution of (1)  is 
not too sensitive to the magnitude and shape of P(r+). In  axisymmetric cases, 
quite good agreement has been achieved between experiment and theories, which 

30-2 
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differed markedly from each other. A notable example is the prediction of the 
turbulent velocity profile in a plain tube. The present result is based on a difficult 
set of measurements. It might well be that these do no more thanfail to disprove 
the hypothesis that, in general, are equal. It is apparently valid in and 

z 

FIGURE 6. Radial concentration for line source, R = 20,800, o = 0 rad: theory, equa- 
tion (26), -- , experiment, z + :  0, 0.00; 0, 9.30; V, 21.70; +, 42-36; x ,  63.02; 
A, 83.68; 0, 104.34. 

the present case, but its validity must be established for other cases, especially 
for fluids of high Prandtl number, before it becomes unchallengeable. 

The apparent equivalence of ed, and ca, found here has aome significance, 
when its relevance to the mixing length theory is considered. The time mean 
rate of mass transfer in the radial and tangential directions may be written: 
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1.4 I I I I I I I I I I 

I I .  I I I I I 1 I 
0 0.1746 0.5238 0.8730 1.222 1.5714 

0.6 I 
o (rad) 

FIGURE 9. Tangential variation of concentration profile for ring source at Z+ = 31. 
R = 20,800. Theory, equation (26), -; experiment, z: 0, 0.990; D, 0.897; x , 0.793; 
A,  0.693; A ,  0.594; V, 0.495; V, 0.396; +, 0.297; 0, 0.198; 0, 0.099; +, 0.000. 
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10. Tangential eddy difYusivity of mass. Theory, equation (30), -; experiment: 

0, R = 119,100; 0, 81,950; V, 44,700; A,  20,800. 
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Following Goldstein (1938, p, 205), using the expansion in a Taylor series of 
equations (31a) and (31b) and introducing the mixing lengths Zd,r and I,,,, we 
maylwrite 

where-V' and 2' are time averages of the velocity fluctuations in r and s, and 

2.8 I I I 1 1 1 1 1 1  I I I 1 1 1 1 1 1  I I I I I I I I I  I I 1  1 1 1 * ) 1  1 1  

- 
- 
- 

- 
- 
- 

100 1000 10,000 40,000 1 10 

FIGURE 11. Ratio of tangential eddy diffusivity of mam to radial eddy diffusivity of 
momentum. -, Jenkins' theory, equation (30) ; 0, experimental measurements. 

That is 

and 

Since the present results indicate that f& and ed.,, are equal, we may conclude 
that 

The experiments of Laufer (1954) and Sandborn (1955) show that near the 
wall V' and W' are not equal. Accordingly, the present results suggest that the 
mixing lengths in the radial and tangential directions are not equal near the 
wall. On the other hand, Laufer and Sandborn found V' and W' to be equal at  the 
centre of the tube. Thus, we may conclude that in the centre the mixing lengths, 
also, are equal. 
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6. Conclusion 
The analysis presented for mass transfer, into a fully developed turbulent 

flow in a plain tube in a non-axisymmetric situation, is in good agreement with 
experiments for 20,000 < R < 120,000. The results are equally good, whether 
the mass transfer is mainly taking place in the central core of the flow, or in 
the wall region. The good agreement between theory and experiment suggests 
the correctness of the assumption made in the analysis, that the tangential and 
radial eddy diffusivities of mass are equal. Further investigation with fluids of 
Prandtl number greater than unity should provide a more stringent test of this 
assumption. 

As a consequence of the apparent equivalence of the radial and tangential 
eddy diffusivities of mass at  a point, it is suggested that the mixing lengths, 
in the radial and tangential directions, are related by 

Thus, at  the centre of the tube, the mixing lengths are equal but, near the wall 
of the tube, they are not equal. 

The present results for mass transfer are considered very relevant to heat trans- 
fer in non-axisymmetrie situations, especially for gases. 
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